
Bernoulli's equation (article) | Fluid flow | Khan Academy
Learn how Bernoulli's equation describes the conservation of mechanical energy in ideal fluid flow. Explore consequences of Bernoulli's equation, including Torricelli's theorem.
Khan Academy | Khan Academy
Opa! Alguma coisa deu errado. Tente novamente. Ah não, parece que ocorreu um erro. Você precisa atualizar. Se o problema persistir, fale conosco.
Khan Academy | Khan Academy
Oups. Il y a eu un problème. S'il vous plaît, veuillez reessayer. Oups, on dirait qu'il y a eu une erreur ! Vous devez actualiser. Si le problème persiste, dites-nous.
Khan Academy | Khan Academy
Learn about Bernoulli's equation and its applications in fluid dynamics on this educational platform.
Khan Academy | Khan Academy
Oops. Something went wrong. Please try again. Uh oh, it looks like we ran into an error. You need to refresh. If this problem persists, tell us.
Free Math Worksheets - Khan Academy Blog
Mar 15, 2021 · Looking for free math worksheets? You’ve found something even better! That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional …
Application de l'équation de Bernoulli : Vidange - Khan Academy
Équation de Bernoulli Application de l'équation de Bernoulli : Vidange - Partie I Application de l'équation de Bernoulli : Vidange - Partie II Application de l'équation de Bernoulli : Calcul d'un débit volumique
Derivação da equação de Bernoulli - parte 2 - Khan Academy
Este é o segundo de dois vídeos nos quais derivamos a equação de Bernoulli. Na segunda metade do vídeo, começamos um exemplo de um problema no qual o líquido sai por um buraco em um contêiner.
Oups. Il y a eu un problème. S'il vous plaît, veuillez reessayer.
Oups. Il y a eu un problème. S'il vous plaît, veuillez reessayer. Oups, on dirait qu'il y a eu une erreur ! Vous devez actualiser. Si le problème persiste, dites-nous.
Bernoulli's equation derivation part 1 (video) | Khan Academy
Bernoulli's equation is an equation from fluid mechanics that describes the relationship between pressure, velocity, and height in an ideal, incompressible fluid.